常用算法整理

剑指Offer http://itmyhome.com/sword-means-offer/sword-means-offer.pdf 算法可视化界⾯ https://github.com/algorithm-visualizer/algorithm-visualizer 位运算 ⼗进制、二进制相互转换 十进制 33 可以看成是 32 + 1 ,并且 33 应该是六位二进制的(因为 33 近似 32,而 32 是 2 的五次方,所以是六位),那么 十进制 33 就是 100001 ,只要是 2 的次方,那么就是 1否则都为 0 那么二进制 100001 同理,首位是 2^5 ,末位是 2^0 ,相加得出 33 左移 << 10 << 1 // -> 20 左移就是将二进制全部往左移动,10 在二进制中表示为 1010 ,左移一位后变成 10100 ,转换为十进制也就是 20,所以基本可以把左移看成以下公式 a * (2 ^ b) 算数右移 >> 10 >> 1 // -> 5 算数右移就是将二进制全部往右移动并去除多余的右边,10 在二进制中表示为 1010 ,右移一位后变成 101 ,转换为十进制也就是 5,所以基本可以把右移看成以下公式 int v = a / (2 ^ b) 右移很好用,比如可以用在二分算法中取中间值 13 >> 1 // -> 6 按位操作 按位与 每一位都为 1,结果才为 1 8 & 7 // -> 0 // 1000 & 0111 -> 0000 -> 0 按位或 其中一位为 1,结果就是 1 8 | 7 // -> 15 // 1000 | 0111 -> 1111 -> 15 按位异或 每一位都不同,结果才为 1 8 ^ 7 // -> 15 8 ^ 8 // -> 0 // 1000 ^ 0111 -> 1111 -> 15 // 1000 ^ 1000 -> 0000 -> 0 从以上代码中可以发现按位异或就是不进位加法 面试题:两个数不使用四则运算得出和 这道题中可以按位异或,因为按位异或就是不进位加法,8 ^ 8 = 0 如果进位了,就是 16 了,所以我们只需要将两个数进行异或操作,然后进位。那么也就是说两个二进制都是 1 的位置,左边应该有一个进位 1,所以可以得出以下公式 a + b = (a ^ b) + ((a & b) << 1) ,然后通过迭代的方式模拟加法 function sum(a, b) { if (a == 0) return b if (b == 0) return a let newA = a ^ b let newB = (a & b) << 1 return sum(newA, newB) } 排序 以下两个函数是排序中会用到的通用函数,就不一一写了 function checkArray(array) { if (!array) return } function swap(array, left, right) { let rightValue = array[right] array[right] = array[left] array[left] = rightValue } 冒泡排序 冒泡排序的原理如下,从第一个元素开始,把当前元素和下一个索引元素进行比较。如果当前元素大,那么就交换位置,重复操作直到比较到最后一个元素,那么此时最后一个元素就是该数组中最大的数。下一轮重复以上操作,但是此时最后一个元素已经是最大数了,所以不需要再比较最后一个元素,只需要比较到 length - 2 的位置。 https://user-gold-cdn.xitu.io/2018/4/12/162b895b452b306c?w=670&h=508&f=gif&s=282307 以下是实现该算法的代码 function bubble(array) { checkArray(array); for (let i = array.length - 1; i > 0; i--) { // 从 0 到 `length - 1` 遍历 for (let j = 0; j < i; j++) { if (array[j] > array[j + 1]) swap(array, j, j + 1) } } return array; } 该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1 ,去掉常数项以后得出时间复杂度是 O(n * n) 插入排序 插入排序的原理如下。第一个元素默认是已排序元素,取出下一个元素和当前元素比较,如果当前元素大就交换位置。那么此时第一个元素就是当前的最小数,所以下次取出操作从第三个元素开始,向前对比,重复之前的操作。 https://user-gold-cdn.xitu.io/2018/4/12/162b895c7e59dcd1?w=670&h=508&f=gif&s=609549 以下是实现该算法的代码 function insertion(array) { checkArray(array); for (let i = 1; i < array.length; i++) { for (let j = i - 1; j >= 0 && array[j] > array[j + 1]; j--) swap(array, j, j + 1); } return array; } 该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1 ,去掉常数项以后得出时间复杂度是 O(n * n) 选择排序 选择排序的原理如下。遍历数组,设置最小值的索引为 0,如果取出的值比当前最小值小,就替换最小值索引,遍历完成后,将第一个元素和最小值索引上的值交换。如上操作后,第一个元素就是数组中的最小值,下次遍历就可以从索引 1 开始重复上述操作。 https://user-gold-cdn.xitu.io/2018/4/13/162bc8ea14567e2e?w=670&h=508&f=gif&s=965636 以下是实现该算法的代码 function selection(array) { checkArray(array); for (let i = 0; i < array.length - 1; i++) { let minIndex = i; for (let j = i + 1; j < array.length; j++) { minIndex = array[j] < array[minIndex] ? j : minIndex; } swap(array, i, minIndex); } return array; } 该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1 ,去掉常数项以后得出时间复杂度是 O(n * n) 归并排序 归并排序的原理如下。递归的将数组两两分开直到最多包含两个元素,然后将数组排序合并,最终合并为排序好的数组。假设我有一组数组 [3, 1, 2, 8, 9, 7, 6],中间数索引是 3,先排序数组 [3, 1, 2, 8] 。在这个左边数组上,继续拆分直到变成数组包含两个元素(如果数组长度是奇数的话,会有一个拆分数组只包含一个元素)。然后排序数组 [3, 1] 和 [2, 8] ,然后再排序数组 [1, 3, 2, 8] ,这样左边数组就排序完成,然后按照以上思路排序右边数组,最后将数组 [1, 2, 3, 8] 和 [6, 7, 9] 排序。 https://user-gold-cdn.xitu.io/2018/4/13/162be13c7e30bd86?w=896&h=1008&f=gif&s=937952 以下是实现该算法的代码 function sort(array) { checkArray(array); mergeSort(array, 0, array.length - 1); return array; } function mergeSort(array, left, right) { // 左右索引相同说明已经只有一个数 if (left === right) return; // 等同于 `left + (right - left) / 2` // 相比 `(left + right) / 2` 来说更加安全,不会溢出 // 使用位运算是因为位运算比四则运算快 let mid = parseInt(left + ((right - left) >> 1)); mergeSort(array, left, mid); mergeSort(array, mid + 1, right); let help = []; let i = 0; let p1 = left; let p2 = mid + 1; while (p1 <= mid && p2 <= right) { help[i++] = array[p1] < array[p2] ? array[p1++] : array[p2++]; } while (p1 <= mid) { help[i++] = array[p1++]; } while (p2 <= right) { help[i++] = array[p2++]; } for (let i = 0; i < help.length; i++) { array[left + i] = help[i]; } return array; } 以上算法使用了递归的思想。递归的本质就是压栈,每递归执行一次函数,就将该函数的信息(比如参数,内部的变量,执行到的行数)压栈,直到遇到终止条件,然后出栈并继续执行函数。对于以上递归函数的调用轨迹如下 mergeSort(data, 0, 6) // mid = 3 mergeSort(data, 0, 3) // mid = 1 mergeSort(data, 0, 1) // mid = 0 mergeSort(data, 0, 0) // 遇到终止,回退到上一步 mergeSort(data, 1, 1) // 遇到终止,回退到上一步 // 排序 p1 = 0, p2 = mid + 1 = 1 // 回退到 `mergeSort(data, 0, 3)` 执行下一个递归 mergeSort(2, 3) // mid = 2 mergeSort(3, 3) // 遇到终止,回退到上一步 // 排序 p1 = 2, p2 = mid + 1 = 3 // 回退到 `mergeSort(data, 0, 3)` 执行合并逻辑 // 排序 p1 = 0, p2 = mid + 1 = 2 // 执行完毕回退 // 左边数组排序完毕,右边也是如上轨迹 该算法的操作次数是可以这样计算:递归了两次,每次数据量是数组的一半,并且最后把整个数组迭代了一次,所以得出表达式 2T(N / 2) + T(N) (T 代表时间,N 代表数据量)。根据该表达式可以套用 该公式 得出时间复杂度为 O(N * logN) 快排 快排的原理如下。随机选取一个数组中的值作为基准值,从左至右取值与基准值对比大小。比基准值小的放数组左边,大的放右边,对比完成后将基准值和第一个比基准值大的值交换位置。然后将数组以基准值的位置分为两部分,继续递归以上操作。 https://user-gold-cdn.xitu.io/2018/4/16/162cd23e69ca9ea3?w=824&h=506&f=gif&s=867744 以下是实现该算法的代码 function sort(array) { checkArray(array); quickSort(array, 0, array.length - 1); return array; } function quickSort(array, left, right) { if (left < right) { swap(array, , right) // 随机取值,然后和末尾交换,这样做比固定取一个位置的复杂度略低 let indexs = part(array, parseInt(Math.random() * (right - left + 1)) + left, right); quickSort(array, left, indexs[0]); quickSort(array, indexs[1] + 1, right); } } function part(array, left, right) { let less = left - 1; let more = right; while (left < more) { if (array[left] < array[right]) { // 当前值比基准值小,`less` 和 `left` 都加一 ++less; ++left; } else if (array[left] > array[right]) { // 当前值比基准值大,将当前值和右边的值交换 // 并且不改变 `left`,因为当前换过来的值还没有判断过大小 swap(array, --more, left); } else { // 和基准值相同,只移动下标 left++; } } // 将基准值和比基准值大的第一个值交换位置 // 这样数组就变成 `[比基准值小, 基准值, 比基准值大]` swap(array, right, more); return [less, more]; } 该算法的复杂度和归并排序是相同的,但是额外空间复杂度比归并排序少,只需 O(logN),并且相比归并排序来说,所需的常数时间也更少。 面试题 Sort Colors:该题目来自 LeetCode,题目需要我们将 [2,0,2,1,1,0] 排序成 [0,0,1,1,2,2] ,这个问题就可以使用三路快排的思想。 以下是代码实现 var sortColors = function(nums) { let left = -1; let right = nums.length; let i = 0; // 下标如果遇到 right,说明已经排序完成 while (i < right) { if (nums[i] == 0) { swap(nums, i++, ++left); } else if (nums[i] == 1) { i++; } else { swap(nums, i, --right); } } }; Kth Largest Element in an Array:该题目来自 LeetCode,题目需要找出数组中第 K 大的元素,这问题也可以使用快排的思路。并且因为是找出第 K 大元素,所以在分离数组的过程中,可以找出需要的元素在哪边,然后只需要排序相应的一边数组就好。 以下是代码实现 var findKthLargest = function(nums, k) { let l = 0 let r = nums.length - 1 // 得出第 K 大元素的索引位置 k = nums.length - k while (l < r) { // 分离数组后获得比基准树大的第一个元素索引 let index = part(nums, l, r) // 判断该索引和 k 的大小 if (index < k) { l = index + 1 } else if (index > k) { r = index - 1 } else { break } } return nums[k] }; function part(array, left, right) { let less = left - 1; let more = right; while (left < more) { if (array[left] < array[right]) { ++less; ++left; } else if (array[left] > array[right]) { swap(array, --more, left); } else { left++; } } swap(array, right, more); return more; } 堆排序 堆排序利用了二叉堆的特性来做,二叉堆通常用数组表示,并且二叉堆是一颗完全二叉树(所有叶节点(最底层的节点)都是从左往右顺序排序,并且其他层的节点都是满的)。二叉堆又分为大根堆与小根堆。 大根堆是某个节点的所有子节点的值都比他小 小根堆是某个节点的所有子节点的值都比他大 堆排序的原理就是组成一个大根堆或者小根堆。以小根堆为例,某个节点的左边子节点索引是 i * 2 + 1,右边是 i * 2 + 2,父节点是 (i - 1) /2。 首先遍历数组,判断该节点的父节点是否比他小,如果小就交换位置并继续判断,直到他的父节点比他大 重新以上操作 1,直到数组首位是最大值 然后将首位和末尾交换位置并将数组长度减一,表示数组末尾已是最大值,不需要再比较大小 对比左右节点哪个大,然后记住大的节点的索引并且和父节点对比大小,如果子节点大就交换位置 重复以上操作 3 - 4 直到整个数组都是大根堆。 https://user-gold-cdn.xitu.io/2018/4/17/162d2a9ff258dfe1?w=1372&h=394&f=gif&s=1018181 以下是实现该算法的代码 function heap(array) { checkArray(array); // 将最大值交换到首位 for (let i = 0; i < array.length; i++) { heapInsert(array, i); } let size = array.length; // 交换首位和末尾 swap(array, 0, --size); while (size > 0) { heapify(array, 0, size); swap(array, 0, --size); } return array; } function heapInsert(array, index) { // 如果当前节点比父节点大,就交换 while (array[index] > array[parseInt((index - 1) / 2)]) { swap(array, index, parseInt((index - 1) / 2)); // 将索引变成父节点 index = parseInt((index - 1) / 2); } } function heapify(array, index, size) { let left = index * 2 + 1; while (left < size) { // 判断左右节点大小 let largest = left + 1 < size && array[left] < array[left + 1] ? left + 1 : left; // 判断子节点和父节点大小 largest = array[index] < array[largest] ? largest : index; if (largest === index) break; swap(array, index, largest); index = largest; left = index * 2 + 1; } } 以上代码实现了小根堆,如果需要实现大根堆,只需要把节点对比反一下就好。 该算法的复杂度是 O(logN) 系统自带排序实现 每个语言的排序内部实现都是不同的。 对于 JS 来说,数组长度大于 10 会采用快排,否则使用插入排序 源码实现 。选择插入排序是因为虽然时间复杂度很差,但是在数据量很小的情况下和 O(N * logN)相差无几,然而插入排序需要的常数时间很小,所以相对别的排序来说更快。 对于 Java 来说,还会考虑内部的元素的类型。对于存储对象的数组来说,会采用稳定性好的算法。稳定性的意思就是对于相同值来说,相对顺序不能改变。 https://user-gold-cdn.xitu.io/2018/4/18/162d7df247dcda00?w=440&h=727&f=png&s=38002 链表 反转单向链表 该题目来自 LeetCode,题目需要将一个单向链表反转。思路很简单,使用三个变量分别表示当前节点和当前节点的前后节点,虽然这题很简单,但是却是一道面试常考题 以下是实现该算法的代码 var reverseList = function(head) { // 判断下变量边界问题 if (!head || !head.next) return head // 初始设置为空,因为第一个节点反转后就是尾部,尾部节点指向 null let pre = null let current = head let next // 判断当前节点是否为空 // 不为空就先获取当前节点的下一节点 // 然后把当前节点的 next 设为上一个节点 // 然后把 current 设为下一个节点,pre 设为当前节点 while(current) { next = current.next current.next = pre pre = current current = next } return pre }; 树 二叉树的先序,中序,后序遍历 先序遍历表示先访问根节点,然后访问左节点,最后访问右节点。 中序遍历表示先访问左节点,然后访问根节点,最后访问右节点。 后序遍历表示先访问左节点,然后访问右节点,最后访问根节点。 递归实现 递归实现相当简单,代码如下 function TreeNode(val) { this.val = val; this.left = this.right = null; } var traversal = function(root) { if (root) { // 先序 console.log(root); traversal(root.left); // 中序 // console.log(root); traversal(root.right); // 后序 // console.log(root); } }; 对于递归的实现来说,只需要理解每个节点都会被访问三次就明白为什么这样实现了。 非递归实现 非递归实现使用了栈的结构,通过栈的先进后出模拟递归实现。 以下是先序遍历代码实现 function pre(root) { if (root) { let stack = []; // 先将根节点 push stack.push(root); // 判断栈中是否为空 while (stack.length > 0) { // 弹出栈顶元素 root = stack.pop(); console.log(root); // 因为先序遍历是先左后右,栈是先进后出结构 // 所以先 push 右边再 push 左边 if (root.right) { stack.push(root.right); } if (root.left) { stack.push(root.left); } } } } 以下是中序遍历代码实现 function mid(root) { if (root) { let stack = []; // 中序遍历是先左再根最后右 // 所以首先应该先把最左边节点遍历到底依次 push 进栈 // 当左边没有节点时,就打印栈顶元素,然后寻找右节点 // 对于最左边的叶节点来说,可以把它看成是两个 null 节点的父节点 // 左边打印不出东西就把父节点拿出来打印,然后再看右节点 while (stack.length > 0 || root) { if (root) { stack.push(root); root = root.left; } else { root = stack.pop(); console.log(root); root = root.right; } } } } 以下是后序遍历代码实现,该代码使用了两个栈来实现遍历,相比一个栈的遍历来说要容易理解很多 function pos(root) { if (root) { let stack1 = []; let stack2 = []; // 后序遍历是先左再右最后根 // 所以对于一个栈来说,应该先 push 根节点 // 然后 push 右节点,最后 push 左节点 stack1.push(root); while (stack1.length > 0) { root = stack1.pop(); stack2.push(root); if (root.left) { stack1.push(root.left); } if (root.right) { stack1.push(root.right); } } while (stack2.length > 0) { console.log(s2.pop()); } } } 中序遍历的前驱后继节点 实现这个算法的前提是节点有一个 parent 的指针指向父节点,根节点指向 null 。 https://user-gold-cdn.xitu.io/2018/4/24/162f61ad8e8588b7?w=682&h=486&f=png&s=41027 如图所示,该树的中序遍历结果是 4, 2, 5, 1, 6, 3, 7 前驱节点 对于节点 2 来说,他的前驱节点就是 4 ,按照中序遍历原则,可以得出以下结论 如果选取的节点的左节点不为空,就找该左节点最右的节点。对于节点 1 来说,他有左节点 2 ,那么节点 2 的最右节点就是 5 如果左节点为空,且目标节点是父节点的右节点,那么前驱节点为父节点。对于节点 5 来说,没有左节点,且是节点 2 的右节点,所以节点 2 是前驱节点 如果左节点为空,且目标节点是父节点的左节点,向上寻找到第一个是父节点的右节点的节点。对于节点 6 来说,没有左节点,且是节点 3 的左节点,所以向上寻找到节点 1 ,发现节点 3 是节点 1 的右节点,所以节点 1 是节点 6 的前驱节点 以下是算法实现 function predecessor(node) { if (!node) return // 结论 1 if (node.left) { return getRight(node.left) } else { let parent = node.parent // 结论 2 3 的判断 while(parent && parent.right === node) { node = parent parent = node.parent } return parent } } function getRight(node) { if (!node) return node = node.right while(node) node = node.right return node } 后继节点 对于节点 2 来说,他的后继节点就是 5 ,按照中序遍历原则,可以得出以下结论 如果有右节点,就找到该右节点的最左节点。对于节点 1 来说,他有右节点 3 ,那么节点 3 的最左节点就是 6 如果没有右节点,就向上遍历直到找到一个节点是父节点的左节点。对于节点 5 来说,没有右节点,就向上寻找到节点 2 ,该节点是父节点 1 的左节点,所以节点 1 是后继节点 以下是算法实现 function successor(node) { if (!node) return // 结论 1 if (node.right) { return getLeft(node.right) } else { // 结论 2 let parent = node.parent // 判断 parent 为空 while(parent && parent.left === node) { node = parent parent = node.parent } return parent } } function getLeft(node) { if (!node) return node = node.left while(node) node = node.left return node } 树的深度 树的最大深度:该题目来自 Leetcode,题目需要求出一颗二叉树的最大深度 以下是算法实现 var maxDepth = function(root) { if (!root) return 0 return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1 }; 对于该递归函数可以这样理解:一旦没有找到节点就会返回 0,每弹出一次递归函数就会加一,树有三层就会得到3。 动态规划 动态规划背后的基本思想非常简单。就是将一个问题拆分为子问题,一般来说这些子问题都是非常相似的,那么我们可以通过只解决一次每个子问题来达到减少计算量的目的。 一旦得出每个子问题的解,就存储该结果以便下次使用。 斐波那契数列 斐波那契数列就是从 0 和 1 开始,后面的数都是前两个数之和 0,1,1,2,3,5,8,13,21,34,55,89.... 那么显然易见,我们可以通过递归的方式来完成求解斐波那契数列 function fib(n) { if (n < 2 && n >= 0) return n return fib(n - 1) + fib(n - 2) } fib(10) 以上代码已经可以完美的解决问题。但是以上解法却存在很严重的性能问题,当 n 越大的时候,需要的时间是指数增长的,这时候就可以通过动态规划来解决这个问题。 动态规划的本质其实就是两点 自底向上分解子问题 通过变量存储已经计算过的解 根据上面两点,我们的斐波那契数列的动态规划思路也就出来了 斐波那契数列从 0 和 1 开始,那么这就是这个子问题的最底层 通过数组来存储每一位所对应的斐波那契数列的值 function fib(n) { let array = new Array(n + 1).fill(null) array[0] = 0 array[1] = 1 for (let i = 2; i <= n; i++) { array[i] = array[i - 1] + array[i - 2] } return array[n] } fib(10) 0 - 1背包问题 该问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。每个问题只能放入至多一次。 假设我们有以下物品 物品 ID / 重量 价值 1 3 2 7 3 12 对于一个总容量为 5 的背包来说,我们可以放入重量 2 和 3 的物品来达到背包内的物品总价值最高。 对于这个问题来说,子问题就两个,分别是放物品和不放物品,可以通过以下表格来理解子问题 物品 ID / 剩余容量 0 1 2 3 4 5 1 0 3 3 3 3 3 2 0 3 7 10 10 10 3 0 3 7 12 15 19 直接来分析能放三种物品的情况,也就是最后一行 当容量少于 3 时,只取上一行对应的数据,因为当前容量不能容纳物品 3 当容量 为 3 时,考虑两种情况,分别为放入物品 3 和不放物品 3 不放物品 3 的情况下,总价值为 10 放入物品 3 的情况下,总价值为 12,所以应该放入物品 3 当容量 为 4 时,考虑两种情况,分别为放入物品 3 和不放物品 3 不放物品 3 的情况下,总价值为 10 放入物品 3 的情况下,和放入物品 1 的价值相加,得出总价值为 15,所以应该放入物品 3 当容量 为 5 时,考虑两种情况,分别为放入物品 3 和不放物品 3 不放物品 3 的情况下,总价值为 10 放入物品 3 的情况下,和放入物品 2 的价值相加,得出总价值为 19,所以应该放入物品 3 以下代码对照上表更容易理解 /** * @param {*} w 物品重量 * @param {*} v 物品价值 * @param {*} C 总容量 * @returns */ function knapsack(w, v, C) { let length = w.length if (length === 0) return 0 // 对照表格,生成的二维数组,第一维代表物品,第二维代表背包剩余容量 // 第二维中的元素代表背包物品总价值 let array = new Array(length).fill(new Array(C + 1).fill(null)) // 完成底部子问题的解 for (let i = 0; i <= C; i++) { // 对照表格第一行, array[0] 代表物品 1 // i 代表剩余总容量 // 当剩余总容量大于物品 1 的重量时,记录下背包物品总价值,否则价值为 0 array[0][i] = i >= w[0] ? v[0] : 0 } // 自底向上开始解决子问题,从物品 2 开始 for (let i = 1; i < length; i++) { for (let j = 0; j <= C; j++) { // 这里求解子问题,分别为不放当前物品和放当前物品 // 先求不放当前物品的背包总价值,这里的值也就是对应表格中上一行对应的值 array[i][j] = array[i - 1][j] // 判断当前剩余容量是否可以放入当前物品 if (j >= w[i]) { // 可以放入的话,就比大小 // 放入当前物品和不放入当前物品,哪个背包总价值大 array[i][j] = Math.max(array[i][j], v[i] + array[i - 1][j - w[i]]) } } } return array[length - 1][C] } 最长递增子序列 最长递增子序列意思是在一组数字中,找出最长一串递增的数字,比如 0, 3, 4, 17, 2, 8, 6, 10 对于以上这串数字来说,最长递增子序列就是 0, 3, 4, 8, 10,可以通过以下表格更清晰的理解 数字 0 3 4 17 2 8 6 10 长度 1 2 3 4 2 4 4 5 通过以上表格可以很清晰的发现一个规律,找出刚好比当前数字小的数,并且在小的数组成的长度基础上加一。 这个问题的动态思路解法很简单,直接上代码 function lis(n) { if (n.length === 0) return 0 // 创建一个和参数相同大小的数组,并填充值为 1 let array = new Array(n.length).fill(1) // 从索引 1 开始遍历,因为数组已经所有都填充为 1 了 for (let i = 1; i < n.length; i++) { // 从索引 0 遍历到 i // 判断索引 i 上的值是否大于之前的值 for (let j = 0; j < i; j++) { if (n[i] > n[j]) { array[i] = Math.max(array[i], 1 + array[j]) } } } let res = 1 for (let i = 0; i < array.length; i++) { res = Math.max(res, array[i]) } return res }

本文章由javascript技术分享原创和收集

发表评论 (审核通过后显示评论):